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Abstract— Radiation therapy is the primary treatment
for recurrent nasopharyngeal carcinoma. However, it may
induce necrosis of the nasopharynx, leading to severe
complications such as bleeding and headache. Therefore,
forecasting necrosis of the nasopharynx and initiating
timely clinical intervention has important implications for
reducing complications caused by re-irradiation. This re-
search informs clinical decision-making by making pre-
dictions on re-irradiation of recurrent nasopharyngeal car-
cinoma using deep learning multi-modal information fu-
sion between multi-sequence nuclear magnetic resonance
imaging and plan dose. Specifically, we assume that the
hidden variables of model data can be divided into two
categories: task-consistency and task-inconsistency. The
task-consistency variables are characteristic variables con-
tributing to target tasks, while the task-inconsistency vari-
ables are not apparently helpful. These modal character-
istics are adaptively fused when the relevant tasks are
expressed through the construction of supervised classi-
fication loss and self-supervised reconstruction loss. The
cooperation of supervised classification loss and self-
supervised reconstruction loss simultaneously reserves
the information of characteristic space and controls po-
tential interference simultaneously. Finally, multi-modal fu-
sion effectively fuses information through an adaptive link-
ing module. We evaluated this method on a multi-center
dataset. and found the prediction based on multi-modal
features fusion outperformed predictions based on single-
modal, partial modal fusion or traditional machine learning
methods.
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I. INTRODUCTION

NASOPHARYNGEAL carcinoma(NPC) is a head and
neck cancer common in southeast Asia [1], [2]. The

standard treatment for early disease is radiotherapy, and for
advanced disease, radiotherapy and chemotherapy may be
combined. Radiotherapy and combined modality treatments
have significantly improved local control of advanced NPC [3],
[4], but local recurrence remains a major cause of treatment
failure [5], [6]. In many cases of recurrent NPC, infiltration
has already occurred at the time of diagnosis, making re-
irradiation therapy the only option for salvage. After salvage
therapy, a large portion of patients can survive for years;
therefore, aggressive treatment with curative intent is generally
advisable [7], [8]. Re-irradiation using intensity-modulated
radiation therapy (IMRT) is the primary method of recur-
rent nasopharyngeal carcinoma treatment. However, radiation-
induced nasopharyngeal necrosis, as the leading adverse effect
during re-irradiation [9], may cause potentially life-threatening
bleeding to patients if it cannot be controlled [10]. Therefore,
it is of great significance to improve the prognosis of patients
to forecast the risk of nasopharyngeal necrosis before re-
irradiation.

The application of radiomics in oncology has garnered
significant attention in recent years. The overarching theme
of the field is to extracts quantitative characteristics such as
form, texture, and wavelet in order to conduct deep represen-
tation of disease phenotype and build statistical models for
the diagnosis, classification, and prognosis of diseases [11],
[12]. Previous successful experiences using deep learning on
medical image analysis tasks demonstrated radiomics is able to
operate end-to-end modeling over the course of medical inter-
actions, conducting multi-task learning on multiple clinic tasks
with a sound predictive effect [13]. Thus, radiomics based on
deep learning has potential value for forecasting prognosis and
therapeutic reaction of nasopharyngeal carcinoma [14], [15],
[16].

With the rapid development of diagnostic imaging, tech-
nologies such as magnetic resonance imaging(MRI), computed
tomography(CT), and positron emission tomography (PET)
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Fig. 1: Flow diagram of re-radiotherapy for recurrent nasopharyngeal carcinoma necrosis forecast. Multi-modal data:
obtained the multi-modal data: T1, T1C, T2, and dose. Radiomics and Features selection: to extract the radiomics features of
the multi-modal data and reduce the original features dimension. Features Fusion: constructed a multi-modal feature fusion

network and train the proposed model. Model Prediction: The test was carried out based on the trained model.

are widely used in the diagnosis and prognosis analysis of
many diseases. Liu et al. [17] reviewed the development
situation of COVID-19 diagnosis and forecast based on deep
learning and medical image analysis. The authors highlight
that the application of deep learning in medical images play an
important guiding role in COVID-19’s diagnosis and forecast.
Khvostikov et al. [18] proposed the application of the 3DCNN
classification method to research Alzheimer’s using sMRI
and MD-DTI images. The method fuses sMRI and MD-DTI
images on 3DCNN to establish a combined analysis method
of diseases. Guo et al. proposed an NPC MR image T-
staging method based on weak supervised deep learning [19].
This method used image slices of patients and TNM staging
labels to construct weakly supervised label data and built
a classification network using ResNet for T staging. Zhong
et al. [20] proposed a method based on multiple parameters
MR image fusion for prognosis forecast of NPC patients.
This method extracts features on MR images with different
modalities based on deep neural network and makes feature
fusion to build a survival prediction model of patients. Liu
et al. [21] discussed the value of prognosis of pathological
microscopic features and the effect on treatment decisions
using deep learning methods reliable instruments to forecast
the survival risks of NPC patients and may have the capability
to guide the treatment decision. Yue et al. [22] proposed a
multi-loss disentangled representation learning method. Data
at different stages underwent multi-feature fusion to enhance
the forecast ability of pCR (pathologic complete response)
after neoadjuvant chemoradiotherapy (nCRT). Using the re-
gressive analysis method, Yu et al. [23] built a mathematical
model based on clinical features. This model is applied for

forecasting the locoregional necrosis of recurrent NPC patients
were receiving IMRT. However, this model can only provide
a risk rating scale. Accurate prediction for individuals cannot
be carried out under this model.

Although deep learning and radiomics have achieved great
progress on medical image analysis [24], [25], [26], no re-
search has been conducted focusing on nasopharyngeal necro-
sis before re-irradiation of recurrent NPC. In the current study,
we build an automatic forecast model of re-irradiation on
recurrent NPC patients and discuss the relationship between
multi-modal data and NPC nasopharyngeal necrosis forecast.

The main research questions in the current study include the
following points: 1. How radiation dose data can constitute
effective features of NPC necrosis forecast; 2. How multi-
modal features can be fused effectively; 3. The significance
of multi-modal features fusion for nasopharyngeal necrosis
forecasting.

Radiation dose data is usually calculated within the gross
tumor volume (GTV) at the three-dimensional voxel level.
Many types of research indicate that dose volume histograms
(DVHs) generated by radiotherapy planning are related to
disease prognosis. However, while useful for plan assess-
ment, DVHs are a two-dimensional representation of the dose
distribution, removing the spatially relevant information of
the inherent three-dimensional dose distribution [27], [28].
Moreover, for medical images, different modalities contain
different information. The fusion of multi-modal information
can effectively improve the perception ability of the task. The
same applies to a variety of radiomics-based tasks. Previous
multi-modal omics features fusion methods generally directly
concatenated or added to train the target task [29], [30].
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TABLE I: Cohorts information of all samples in this study.

Dataset A Dataset B

No necrosis necrosis No necrosis necrosis

Gender(%)

Male 63(31.5%) 43(21.5%) 10(33.3%) 6(20%)

Female 57(28.5%) 37(18.5%) P-value=0.9769 9(30%) 5(16.7%) P-value=1.000

Age(mean±std) 47(24-75) 48(24-75) 49(28-63) 48(24-69)

Overall stagea, No.(%)

I 5(2.5%) 1(0.5%) 2(6.67%) 0(0%)

II 23(11.5%) 14(7%) 3(10%) 2(6.67%)

III 35(17.5%) 25(12.5%) 6(20%) 4(13.33%)

IV 57(28.5%) 40(20%) P-value=0.7401 8(26.67%) 5(16.66%) P-value=0.8885

chemotherapy(%)

Yes 37(18.5%) 31(15.5%) 2(6.67%) 3(10%)

No 83(41.5%) 49(24.5%) P-value=0.314 17(56.67%) 8(26.66%) P-value=0.3268
1 aAccording to the 8th edition of the International Union against Cancer/American Joint Committee on Cancer (UICC/AJCC)

staging manual.
2 P values were calculated by Chi-square test for categorical variables and non-parametric test for continuous variables.

However, this method cannot eliminate the redundancy of
multi-modal features for effective fusion. Therefore, it is nec-
essary to explore effective multi-modal feature fusion methods.
Recently, disentangled representation learning has played an
essential role in multi-modal feature fusion. Disentangled
representation learning can disassemble information into nu-
merous independent factors where, every factor comprises a
valuable aspect [22], [31], [32]. Xu et al. fused vocal features
of the different models to diagnose machinery faults by apply-
ing a dense multiscale network [33]. Guo et al. [34] used deep
disentangled representation learning to forecast the situation
of lymphoma prognosis. Hu et al. [35] propose a method
of finding general characteristics and specific characteristics
among multi-modal MRI through a disentangled multi-modal
antagonistic autoencoder. It used a joint ratio loss function
under multi-modal MRI to restrain the structure of latent
space.

Inspired by the aforementioned literature, we propose a
method of predicting recurrent NPC necrosis based on multi-
modal information fusion. For radiotherapy dose data, we
extract radiomics features to make the quantitative descrip-
tion of a three-dimensional feature of radiotherapy dose; ex-
tract task-consistency features and task inconsistency features
from different modal data through a two-stage feature fusion
method; build a forecast model for re-irradiation necrosis
of recurrent nasopharyngeal carcinoma by making full use
of multi-modal MRI (T1, T1C, T2) images, and radiomics
feature complementary information of radiotherapy dose. The
experimental results indicate that our forecast model for re-
irradiation necrosis of recurrent NPC is not only better than
unimodal data, but also better than the traditional machine
learning method. In addition, compared with some existing
model fusion methods, our method also has certain advantages.

Our main contribution can be summarised as follows:
1. Build a method of multi-modal feature fusion to forecast

re-irradiation necrosis of recurrent nasopharyngeal carcinoma.

2. Apply radiomics on radiotherapy dose data of NPC
tentatively to extract abundant three-dimensional feature in-
formation.

3. Fuse omics features of different models using multiscale
dense connection method to actualize effective fusion of multi-
modal MRI.

4. Fuse MR features and radiotherapy dose features by dis-
entangled representation method, extracting task-consistency
features and task-inconsistency features.

5. Design multi-loss function self-supervised reconstruction
loss and supervised classification loss, which makes feature
fusion of each stage have task-consistency constrain.

II. MATERIALS AND METHODS

A. Materials

1) Patients: Two datasets (Dataset A and Dataset B) accu-
mulated over different periods were used in this study. The
demographic information of all the samples is summarized in
Table 1. Dataset A is a retrospective analysis of 200 patients
with locally recurrent NPC who received re-irradiation +/-
chemotherapy in our hospital between Jun 1, 2013, and Dec
31, 2020. Dataset B is a retrospective analysis of 30 patients
with locally recurrent NPC who received re-irradiation +/-
chemotherapy in our hospital between Jan 1, 2021, and Feb
31, 2023. All patients were re-staged according to the eighth
edition of the International Union Against Cancer/American
Joint Committee on Cancer (UICC/AJCC) staging system. Pre-
irradiation routine and enhanced MRI scans were required for
patients to be eligible for study inclusion. Dataset A was used
both to train the model and to evaluate model performance,
while dataset B was only used to evaluate model performance.
Most patients disease was pathologically confirmed. Other
patients with recurrence in inaccessible sites, such as skull
base or cavernous sinus, were mainly diagnosed based on
imaging representation and clinical symptoms.
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2) Magnetic resonance imaging (MRI): All MRI examina-
tions were conducted in the radiology department of our
hospital, with a 3.0-T MRI system. High-quality MRI images
were obtained using the following protocols: axial T1WI: layer
thickness 4 mm, layer spacing: 1 mm, matrix: 320×256, and
field of view (FOV) : 24 cm × 24 cm; axial T2WI: layer
thickness: 5 mm, layer spacing: 1 mm, matrix: 288×192, and
FOV: 24 cm × 24 cm; and axial contrast-enhanced T1WI
(T1CE): layer thickness: 3 mm, layer spacing 1 mm, matrix
256 × 256, and FOV 28 cm × 28 cm.

All MRI images were retrieved from the picture archiving
and communication system for image feature extraction.

3) Chemotherapy: As shown in Table 1, all patients who re-
ceived chemotherapy,underwent Cisplatin-based chemotherapy
(cisplatin alone or cisplatin plus other one or two anti-tumor
drugs).

4) Radiation therapy: All patients were treated with IMRT.
The IMRT plan was designed according to the treatment pro-
tocol for recurrent NPC at our study hospital. Tumor volumes
were delineated in accordance with the International Com-
mission on Radiation Units and Measurements(ICRU) Report
No. 62 and ICRU No. 50. The delineation of recurrent gross
tumor volumes (GTVnx and GTVnd) was determined from the
MR images. The clinical tumor volume (CTV) included GTV
plus a 2 to 3 mm margin. Critical normal structures, including
the brainstem, spinal cord, parotid glands, optic nerves and
chiasm, lens, eyeballs, temporal lobes, temporomandibular
joints, mandible, and hypophysis were contoured and set as
organs at risk (OARs) during optimization. The prescribed
dose was 60–68 Gy to the GTV and 50–54 Gy to the CTV in
30 to 34 fractions. All patients received full-course IMRT with
6-MV x-rays generated by a Trilogy linear accelerator (Varian
Medical Systems, Palo Alto, CA, USA). Dose verification was
carried out before re-irradiation. The dose error between the
measurement and the plan should was less than 2%.

The radiotherapy dose data were retrieved from the treat-
ment planning system for further dose feature extraction.

5) Diagnosis of nasopharyngeal necrosis: Diagnosis of na-
sopharyngeal necrosis was based on clinical characteristics, in-
cluding foul nasal smell, refractory headache, filemot necrotic
tissue and skull base osteoradionecrosis in nasopharyngeal
cavity under endoscopy, discontinuous nasopharyngeal mucosa
line and/or tissue defects on MRI, and a heap of red-stained
substance without cellular structure in hematoxylin-eosin
staining under pathologic examination [36], [37], [38], [39],
[40], [41], [42], [43]. Patients who died from intractable epis-
taxis diagnosed with nasopharyngeal necrosis were recorded
as having lethal nasopharyngeal necrosis (LNN).

B. Method overview

The framework of re-irradiation for recurrent NPC necrosis
forecast based on multi-modal feature fusion is shown in Fig.
1. The whole process is constituted of 4 sections: 1) At the
stage of multi-modal data acquisition, T1, T1C, T2, dose
modal data of patients are respectively acquired for lesion area
delineation by physicians with extensive clinical experience. 2)
Extract radiomics features of multi-modal data by delineation

and analyzing the significance of each feature. 3) Conduct
multi-modal omics feature fusion by the model mentioned
before to achieve information sharing and complement. 4)
Forecast the probability of recurrent NPC necrosis based on
the multi-modal information fusion.

According to the successful experience of multi-modal
radiomics in medical image analysis, we attempt to mine
quantified dose features from three-dimensional dose distribu-
tion of nasopharyngeal carcinoma. The following progress is
executed for the standardization of radiomics feature extraction
progress:

First, the multi-modal MRI data should be field-biased
corrected to reduce the influence caused by magnetic devi-
ation. Then reserve the region of interest (ROI) based on the
carcinoma area delineated by a physician and eliminate back-
ground interference. Register the radiotherapy dose data to the
corresponding MRI carcinoma ROI. At last, use the Python
programming language based software package pyradiomics
3.0.1 to extract radiomics features from T1, T1C, T2 and dose
files. The types of extracted features include form feature, first-
order feature, grey-level co-occurrence matrix (GLCM), grey-
level run-length matrix (GLRLM), grey-level dependence ma-
trix (GLDM), wavelet feature, etc. 1562 features are extracted
respectively from every modal data through radiomics feature
extraction. To relieve the numerical instability of the model
during training, the extracted features are z-score normalized
to eliminate dimensional inconsistencies.

The radiomics features extracted from four different sources
of modal data have a high information dimension, which may
cause redundancy. We used a feature dimension reduction
technique to compress the feature dimension. specifically,
we computed pair-correlation, and the features with high
correlation were eliminated. Furthermore, the random forest
method was used for feature dimension reduction. Leveraging
the random search, the number of final features of each modal
dataset was reduced to 49.

To effectively perform multi-modal feature fusion, we pro-
posed a two-stage feature deep fusion model, namely, multi-
modal MR feature fusion and multi-modal MR and radiation
dose feature fusion respectively. In the beginning, a multi-scale
feature fusion network was used to extract the same embedding
space feature representation of different sequences of MRI.
Then multi-modal MR fusion and dose input features were
coded by latent spacing embedding separately. The combina-
tion was performed adaptively; that is, the task consistency
feature was constructed for the NPC necrosis prediction task.
Next, we described the proposed model architecture, multi-MR
information fusion, latent spacing embedding of MR, and dose
feature vectors, and adaptive task consistency feature fusion
in detail.

The proposed model framework is shown in Fig. 2. The
input of networks consists of four modal features, which are
T1, T1C, and T2. Different image display methods of the same
tumor region, so the features have certain independence and
complementarity. The Multi-modal MRI Feature Fusion Block
(MMFFB) module was used for information fusion to extract
MRI information fusion features with complementary advan-
tages. Then, the MRI omics features and dose omics features
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Fig. 2: The architecture of proposed model. The model had four inputs, of which the MMFFB module fused T1, T2, and
T2C, and the fused features were output Zmri→ X1. The omics features were X2. On the one hand, the variational

auto-encoder learns X1 and X2 feature distribution. The original features X1 and X2 are reconstructed by resampling feature
embedding features Z1 and Z2. On the other hand, Z1 and Z2 can adaptively learn task consistency features for necrosis

prediction. The two VAEs have the same structure. Z1 and Z2 will be globally pooled after a 1x1x10 convolution operation
before splicing and finally sent to softmax for classification probability calculation.

Fig. 3: The architecture of multi-modal MR feature fusion
network. It is noteworthy that the input of this module is the

MR features of three modes, and deep feature fusion is
achieved by constructing a multi-scale dense connection
network. The fused features are used to reconstruct the
original input feature space and for subsequent necrosis

prediction tasks.

are processed through the Variational Autoencoder (VAE) [44]
module to obtain the latent space embedding. Latent space
embedding may be regarded as low-dimensional manifolds
of high-dimensional feature spaces. On the one hand, the
decoder reconstructs two sets of latent space embedding to the
input feature dimensions. On the other hand, a classifier was
constructed by task consistency feature extraction and fusion,
which was used as the main module of the model to predict

the necrosis of recurrent NPC.

C. Multi-modal MRI Feature Fusion block(MMFFB)
For multi-modal MRI radiomics features, there are common

and unique parts among different modes, and extracting both
enables the fusion of the representative MRI modal features.
Regarding disentanglement representation, different modal
features are usually divided into common feature vectors and
specific feature vectors in a fixed proportion [22]. By cross-
fusing the commonality and distinct parts of different modes
and reconstructing them to the corresponding input feature
dimensions, objective optimization can be carried out, and the
corresponding commonality and distinct parts can be learned.
However, several things could be improved in this method.
On the one hand, limiting the dimension of the common and
distinct feature vectors may lead to incomplete expression
of relevant information. On the other hand, it is challenging
to construct a cross-fusion objective-constrained optimization
method when handling a large number of nodes. We posit
that there are feature representations in the three MR modal
datasets that are conducive to the final classification goal
and inconsistent feature representations that could be more
conducive to the task. Therefore, Learning a potential feature
representation can represent the three modes themselves well
and shows good consistency for the classification task. As
shown in Fig. 3, to obtain deep fusion of MR features,
MMFFB block was used for latent space embedding features
extraction. Specifically, An extended Dense U-shape module
was defined to adaptively obtain multi-modal MR features and
fusion. First, multi-modal MR features were concatenated and

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3286656

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan Institute of Technology. Downloaded on July 11,2023 at 01:12:04 UTC from IEEE Xplore.  Restrictions apply. 



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 4: The VAE latent space embedding module. X is the
input feature vector, which generates hidden space

embedding Z through the encoder, and then X̂ is generated
through the decoder.

passed by multi-scale dense blocks to generate the final fusion
MRI feature, whose dimension is the same as each single
modal data. Then, to maximize the MR feature information
of the three modes, the fused features are reconstructed to
the original input feature dimension by a decoder, and the
self-supervised reconstruction loss constraint is utilized. At
the same time, the final fused features are transmitted to
the subsequent network for deep fusion with radiation dose
features to participate in supervised classification optimization.

Specifically, we take as input MRI features from three
different modalities, each with 49 dimensions. First, the three
modal features are concatenated. The feature space is then
mapped into a low-dimensional representation by twice down-
sampling using a 1D convolution operation with a step size
of two and a kernel of three. Use zero padding to keep the
dimension of the feature space Z at 49. Referring to [28],
better feature representation can be obtained by fusing features
from the previous layer and the previous scale. Our specific
operation is to perform a convolution operation after feature
addition, with kernel size k=3, stride=1, and padding=1. In
the decoder module, we recover the dimension of the feature
space using transposed convolution. As shown in Fig. 3, we
perform two downsampling and up-sampling operations. The
low-dimensional embedding Zmri is the fused multi-MRI
feature used for both feature reconstruction and prediction of
radiation necrosis in recurrent NPC re-treatment.

By constructing the self-supervised reconstruction loss-
constrained feature fusion network, the special features and
common features of each MR modal can be effectively ex-
tracted and deeply fused. The optimization objectives are as
follows:

Lossmri recon =
∑

||Xi −Di||2 (1)

The minimum mean square error (MSE) is used to optimize the
reconstruction objective of multi-modal MR features, where
Xi is the feature after the concatenation of three modal MR
omics features, and Di is the reconstructed result of Xi based
on the MMFFB module.

D. Latent Spacing Feature Embedding and Task
Consistency Feature Representation

To fully use the complementary information of the features
of each mode, we carry out task consistency abstraction in the
following ways. Specifically, we project the feature vectors of

each mode into the low-dimensional latent space to embed
the encoding Z. Then, the latent variable Z is decomposed
into Consis(Zi) and Inconsis (Zi). Consis(Zi) represents the
task consistency feature, and Inconsis (Zi) represents the task
inconsistency features intuitively, this classification process
can be understood as the decomposing feature vectors of
different modes into vector representations that are beneficial
to the target task and vector representations that are detrimental
to the target task. In addition, fixing the feature dimensions of
Consis(Zi) and Inconsis(Zi) may lead to insufficient repre-
sentation of the feature space of the target task. Therefore,
we abstractly decompose the latent space embedding code
Z into Consis(Zi) and Inconsis(Zi). We can implicitly learn
the feature embedding representation of the latent space by
optimizing the objective constraints. Therefore, for latent
space feature embedding, the following requirements should
be met:1) Consis(Z1) and Consis(Z2) complement each other
as much as possible; 2) Adaptive decoupled latent space
embedding Zi can reconstruct input X well; 3) Consis(Z1)
and Consis(Z2) can be fused well and increase the predictive
power for the probability of necrosis.

We used two VAE to learn latent space feature embeddings.
The encoder maps the input features into a Gaussian proba-
bility distribution and generates the latent space embedding
Z by resampling, which the decoder uses to reconstruct the
input features. The advantage of using VAE is that noise is
added to the hidden space feature, so the feature reconstruction
has an anti-noise ability. The disentanglement decomposition
representation based on VAE is widely used [22], [35]. In our
study, for radiomics features with different modalities, we first
used a multi-layer perceptron neural network as an encoder to
generate latent variables. Then, a multi-layer perceptron neural
network is used as a decoder to reconstruct the input features.
Finally, different from [22], the hidden space is directly
divided into task consistency and task inconsistency according
to the proportion of the number of features. We implicitly
computed task consistency and inconsistency features by an
adaptive combination of the latent space embedding Zi of the
two modalities. In our study, the number of neurons in each
layer is based on the parameter setting, and the number of
neurons in the other two layers of the encoder is set to 32
and 16, respectively. However, the number of task consistency
features and task inconsistency features were not specified
and obtained by adaptive learning. The module architecture is
shown in Fig. 4. The module consists of the encoder, decoder,
and latent space embedding. The encoder has two layers,
and the number of neurons is 49 and 32, respectively. The
decoder has two layers with 32 and 49 neurons, respectively,
and the middle layer is a hidden space embedding layer with
16 neurons. The encoder learns the features of X through the
network, namely the mean and standard deviation. The hidden
space embedding is performed by randomly sampling under a
standard normal distribution and reconstructing X through the
decoder according to the original feature distribution using
a re-parameterization technique. To formally represent the
decomposability of the latent space embedding, we assume
that the latent space can be intuitively decomposed into
task consistency and inconsistency features, that is, the red
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component and blue component of Z in Fig. 4. We use VAE
reconstruction loss to constrain feature embedding with the
optimization objectives:

Lossvae recon =

2∑
i=1

||Xi −Di(Consis(Ei(Xi)),

Inconsis(Ei(Xi)))||2 +KL(qθ(Zi|Xi)||p(Zi))
(2)

Lossvae recon represents different modal characteristics of
the re-construction loss,Ei and Di represent the ith encoder
and decoder, respectively. p(Zi) is the prior imposed on
the latent space embedding, qθ(Zi|Xi) is the encoder data
distribution, KL is Kullback-Leible divergence.

The latent space features generated by VAE are not ex-
plicitly decomposed into two feature vectors to represent task
consistency features and task inconsistency features. There-
fore, we adopt the method of adaptive feature fusion to select
the adaptive combination of latent space features of different
modes to achieve the purpose of task consistency feature
extraction and fusion. This stage aims to extract discriminative
features from the latent space embedding of different modes.
These characteristics may reinforce or contradict one another.
Therefore, instead of the conventional method, where features
are concatenated and directly sent to the classification layer,
we adopt a multi-feature fusion layer processing step after
feature concatenation. Specifically, we use a 1D convolution
with kernel size 1x1x12 for the latent space embedding Z1,
Z2. The features after the convolution operation are then
concatenated. Finally, the concatenated feature vectors were
pooled by global Max pooling(GMP) to obtain the final fusion
feature, which is then sent to the classifier for classification.

To ensure that the adaptive fusion of latent space features
promotes task consistency, we designed a multi-layer per-
ceptron classifier, which takes the adaptively fused features
as the input of supervised classification and leverages the
supervision of supervised classification to determine the opti-
mization direction of task consistency features. The supervised
classification loss is defined as follows:

Losscls = − 1

N

N∑
n=1

M=2∑
m=1

Y m
n log Ŷ m

n (3)

Where M represent the number of categories, N represent
the number of samples, Y indicates the sample label, and Ŷ
is the prediction result of the model.

Based on the two-stage multi-modal information fusion,
an end-to-end prediction network is constructed. The overall
learning objectives of the model are as follows:

Losstotal = λ1(Losscls) + λ2(Lossmri recon)

+ λ3(Lossvae recon)
(4)

Where λ1 is set to 1, λ2 = λ3 = 0.5.

III. EXPERIMENTS

A. Dataset and Experimental setting

1) Data preprocessing: Before model training, the input
data underwent the following preprocessing: First, we per-
formed N4 bias field correction on MR images to alleviate
the interference caused by magnetic field deviation. Second,
the omics features were extracted from different modes’ MR
and radiation dose data. Last, leveraging z-score normalization
to eliminate dimensional inconsistency problems.

2) Experimental setting: Our study used dataset A to train
and test the proposed method. Dataset B was used to compare
the performance of the proposed model to the existing multi-
modal fusion method. For model training, a total of 200 cases
of data were used. The training set and test set were divided
according to 5-fold cross-validation. That is, a total of five
model training sessions were performed. Each training takes
four-fifths of the total dataset as the training set, with the re-
mainder being used as the test set. Following [45], the random
forest method with a max depth of 100 was used to coarsely
remove the high-dimensional omics features on the training
dataset before the training. The final feature number was
49 according to the feature weight coefficients ranking after
random forest screening. As can be seen in dataset A in Table
1, the number of patients with necrosis was 80, and without
necrosis was 120. Sample category imbalance was a problem
needing to be addressed. Smote oversampling technique was
used to augment data in order to alleviate the problem of
category imbalance on the training set. Specifically, patients
with necrosis were resampled to match the number of patients
without necrosis. In the proposed network architecture, in the
multi-modal MR image fusion stage, the feature variables that
can simultaneously represent the three modes are extracted,
and the number of features after the fusion of the three MR
images is set to 49, which is used for subsequent and dose
feature fusion. In the subsequent fusion stage of MR features
and dose features, the number of feature-embedded variables
of different modes was set to 16. The two kinds of features are
embedded for adaptive fusion to form the final discriminative
features. Our network model is based on PyTorch. In the
training stage, a stochastic gradient descent algorithm is used
to optimize the model, and the learning rate is 0.0001. Training
epochs were set to 1000. All experiments were run on a XEON
E5-2698 V4, GPU NVIDIA GeForce P6000 24GB machine.
To demonstrate the effectiveness of the proposed method, we
verify it from the following aspects: 1) To explore the effect of
different combinations of multi-modal data on the prediction
of radiotherapy necrosis in recurrent NPC.

2) To explore the performance improvement of multi-modal
fusion over single-modal data, we use a variety of machine
learning techniques to conduct extensive tests on four types
of single-modal data while verifying the performance of the
proposed method’s single-modal verification form on the four
types of modal data.

3) To verify the performance of the multi-modal fusion
method proposed in this paper, we compare the proposed
method with the following feature fusion methods: 1) EFM:
Zhu et al. [46]; 2) DAAE: Hu et al. [47]; 3) HyperDense-Net
(HDNET): Dolzde et al. [48]; 4) MLDRL: Yue et al. [22].
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TABLE II: The performance of four modal data combination strategies on dataset A

modal combination AUC ACC SEN SPE

Dose+T1 0.890±0.045 0.8±0.176 0.692±0.742 0.615±0.593

Dose+T2 0.904±0.051 0.75±0.53 0.714±0.69 0.653±0.461

Dose+T1C 0.894±0.043 0.77±0.425 0.832±1.06 0.654±0.73

Dose+T1+T2+T1C 0.936±0.028 0.85±0.145 0.857±0.58 0.692±0.73

Fig. 5: The Receiver operating characteristic of the proposed
method on multi-modal data(dataset A) fusion under

different combination strategies is shown from left to right
and from top to bottom: Dose+T1, Dose+T2, Dose+T1C,

Dose+T1+T1C+T2. The figure shows the AUC indicators of
each fold of the 5-fold cross-validation and the mean

performance.

B. Evaluation Criterion

To better illustrate the predictive ability of the proposed
method to predict necrosis for re-radiotherapy recurrent NPC,
all experimental results were determined by 5-fold cross-
validation, and we calculated the average AUC, classification
accuracy (ACC), sensitivity (SEN), and specificity (SPE) to
measure the performance of the proposed framework and
other methods. The definitions of ACC, SEN, and SPE are
as follows:

ACC =
TP + TN

TP + FP + FN + TN

SEN =
TP

TP + FN

SPE =
TN

TN + FP

(5)

Where TP, FP, TN, FN are true positive, false positive, true
negative, false negative, respectively.

C. Quantitative Results

Advantages of multi-modal information fusion: In the
proposed network framework, four different data modes were
fused in the following ways: Dose+T1, Dose+T1C, Dose+T2,

TABLE III: The performance on single-modal data of several
traditional methods(Dataset A).

method metric T1 T1C T2 Dose

LR AUC 0.533±0.039 0.538±0.038 0.614±0.065 0.756±0.065

ACC 0.58±1.29 0.6±1.358 0.61±2.64 0.69±4.53

SEN 0.442±1.93 0.476±2.50 0.467±1.71 0.587±1.98

SPE 0.649±6.39 0.664±5.472 0.682±1.76 0.742±2.01

RF AUC 0.695±0.047 0.698±0.0496 0.794±0.1106 0.750±0.09

ACC 0.67±1.35 0.64±2.13 0.74±0.851 0.73±1.13

SEN 0.404±1.77 0.38±3.23 0.576±1.59 0.51±2.07

SPE 0.803±3.43 0.77±4.14 0.817±1.85 0.83±0.97

SVM AUC 0.537±0.079 0.547±0.057 0.672±0.1 0.780±0.107

ACC 0.58±1.27 0.57±1.78 0.63±1.829 0.78±1.593

SEN 0.3±1.52 0.271±2.34 0.25±4.75 0.609±0.813

SPE 0.727±0.79 0.728±3.41 0.817±0.83 0.862±1.77

Adaboost AUC 0.710±0.065 0.705±0.059 0.746±0.0838 0.733±0.093

ACC 0.69±2.13 0.63±0.84 0.69±0.39 0.73±1.21

SEN 0.357±0.09 0.323±0.13 0.466±0.413 0.433±0.329

SPE 0.863±1.251 0.787±0.491 0.802±0.463 0.876±1.14

Ours AUC 0.551±0.03 0.566±0.043 0.734±0.119 0.779±0.04

ACC 0.55±0.251 0.59±0.412 0.66±0.736 0.76±0.415

SEN 0.495±0.23 0.495±0.18 0.638±1.09 0.667±0.085

SPE 0.573±1.26 0.636±1.13 0.685±0.921 0.801±0.61

and Dose+T1+T1C+T2. Table 2 shows the performance of
the proposed method on four combinations of multi-modal
data. Fusing all modal data achieves the best performance
compared with the other three fusion strategies. ROC curves
for each fold and the average ROC curve of the 5-fold set of
the four combinations are shown in Fig. 5. The ROC analysis
shows that the fusion of all modes has a better predictive
ability. Specifically, the Dose+T1+T1C+T2 fusion method
achieved the best AUC, ACC, SEN, and SPE, which were
0.936, 0.85, 0.857, and 0.692, respectively. Meanwhile, the
other three combination strategies showed good performance.
Therefore, the strategy based on the fusion of all modes
demonstrated appreciable performance gains compared with
the partial fusion method.

We conducted extensive experiments based on single-modal
data to prove the effectiveness of the multi-modal information
fusion proposed in this study. Since the proposed feature
fusion method is based on a multi-modal scenario, the pro-
posed model cannot be directly used for single-modal data.
Therefore, we removed the multi-feature fusion part of the
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Fig. 6: The test results of the single modal data(dataset A) on different methods, each row represents a classification method,
in order: LR, RF, SVM, Adaboost and Ours. Each column represents a data mode: T1, T1C, T2, Dose, respectively.

TABLE IV: The performance comparison of different
multi-modal feature fusion models(dataset A).

method AUC ACC SEN SPE

EFM [46] 0.88±0.69 0.71±0.764 0.73±2.524 0.5±3.46

DAAE [47] 0.864±0.417 0.77±0.551 0.771±1.58 0.492±1.43

HDNet [48] 0.877±0.124 0.78±0.235 0.862±0.415 0.429±1.526

MLDRL
[22]

0.925±0.073 0.82±0.174 0.865±0.32 0.593±0.941

Ours 0.936±0.028 0.85±0.145 0.857±0.58 0.692±0.73

model and directly trained the supervised classification model
on the single-modal features. To eliminate the deviation by
model differences and highlight the importance of multi-modal

fusion. We used multiple traditional machine learning methods
to experiment with single-modal data. The classifiers used
include logistic regression (LR), Random Forest (RF), Support
Vector Machine (SVM), and Ensemble Model (Adaboost). As
listed in Table 3, SVM showed the best performance in dose
data, with AUC=0.78 and ACC=0.78. T1 and T1C modal
data showed low predictive performance with each classifier,
with the lowest AUC of 0.533. Compared with T1 and T1C,
T2 and dose modal data have a higher predictive potential.
As shown in Fig. 6, dose and T2 achieved good results in
numerous prediction methods for single modal data, while T1
and T1C performed poorly. In addition, the proposed method
achieved similar performance compared to other traditional
single-modal data validation methods. However, after multi-
modal fusion, the AUC of the proposed method was 0.936,
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TABLE V: Model performance comparison on the
supplementary dataset (dataset B).

method AUC ACC SEN SPE

EFM [46] 0.75±0.562 0.65±0.743 0.64±1.582 0.52±2.42

DAAE
[47]

0.768±0.631 0.643±0.945 0.721±1.471 0.54±1.983

HDNet
[48]

0.77±0.751 0.67±0.812 0.754±1.782 0.429±2.41

MLDRL
[22]

0.872±0.43 0.78±0.652 0.823±0.842 0.593±1.74

Ours 0.893±0.24 0.794±0.67 0.78±0.96 0.645±1.32

which was higher than the AUC of the single-modal data,
which was 0.78. These comparisons imply that multi-modal
information fusion played an essential role in the study of
re-radiotherapy induced necrosis in recurrent NPC.

Comparison with other fusion methods: This section
introduces the horizontal comparison between the proposed
method and other fusion methods. The data in this paper have
four modalities, and to highlight the effectiveness of dose
features, it is necessary to treat multi-sequence MRI image
data as a single self-contained modality. Therefore, we add the
multi-modal MRI data into a single self-contained modality.
We feed the added MRI data and the dose data into the network
to compare the existing methods. As can be seen from Table
4, EFM [46], D-AAE [47], HDNET [48], and MLDRL [22]
all show competitive performance for multi-modal data fusion,
with AUC of 0.88, 0.864, 0.877 and 0.925 respectively. How-
ever, our method achieved better performance. Specifically,
the AUC (0.936) and ACC (0.85) are better than the other
fusion methods. Good performance is also achieved for SPE
and SEN, with SEN slightly lower than MLDRL [22]. To
further illustrate the performance of the proposed method, we
also performed supplementary experiments on the dataset B.
As shown in Table 5, our method achieves the best results
on the leading metrics, such as AUC and ACC, and other
metrics also achieve competitive results. These results indicate
that our developed method has increased performance over
other commonly used multi-modal feature fusion methods in
predicting necrosis in recurrent NPC.

D. Ablation Study
1) Different Components Analysis: In this section, we ex-

plore the importance of multi-modal MRI reconstruction loss,
VAE reconstruction loss, and supervised classification loss
on the prediction of NPC necrosis. These experiments were
performed on each component using 5-fold cross-validation
on dataset A. As we can see from Table 6, adding different
reconstruction losses can improve the model performance
compared with only using supervised classification loss. When
only using supervised classification loss (Losscls), AUC and
ACC are 0.878 and 0.75, respectively; Using Losscls and
Lossmri recon, AUC and ACC improve by a point to 0.887 and
0.76, respectively; Use Losscls and Lossvae recon achieves
similar performance as the second combination method, with
an AUC of 0.881, ACC 0.8; The three loss optimization

Fig. 7: Performance comparison of different fusion methods
on dataset A.

methods together achieved the best performance AUC (0.936)
and ACC(0.85). The above results show that these loss func-
tions are practical for target classification tasks. In addition,
combining three losses gives the best performance compared
to two or single losses. Based on the above analysis, the three
loss combinations designed in this study are effective.

2) Significance for Adaptive to learn Task consistency fea-
tures: In this section, we experiment with several different
fusion modalities to show the effect of adaptive task-consistent
feature fusion. Three ways of feature fusion are used in the ex-
periments on dataset A through 5-fold cross-validation. 1. The
features Z1 and Z2 are directly concatenated and connected
to a fully connected layer, and the probability is predicted
by softmax output. 2. The features Z1 and Z2 are directly
added into a fully connected layer, and the probability is
predicted by softmax activate function output. 3. The adaptive
task-consistent feature fusion method proposed in this paper
is used. We compare four performance metrics, AUC, ACC,
SEN, and SPE, as shown in Fig. 7. As in the figure, similar
performance is achieved using direct addition or concatenation
of the features. The best performance was achieved using
the proposed adaptive task-consistent feature fusion method.
Therefore, the proposed task consistency feature is more
advantageous than the direct feature fusion methods.

IV. DISCUSSION

This work discusses multi-modal data’s predictive effect on
recurrent NPC’s radiation necrosis after retreatment. In the
clinic, radiotherapy is a critical factor of radiotherapy necrosis,
so the fusion of radiotherapy dose modality data and MRI
multi-modal image data have practical clinical significance.
On the one hand, the multi-modal MRI image data reflects
the tumor’s shape, size, texture, and other related attributes.
On the other hand, the dose data reflect the irradiation dose
of different tumor regions. Therefore, potential correlations
between these two parameters can be found if they are implic-
itly modeled jointly by fusing multi-modal MRI data and dose
data. In addition, the proposed model is mainly used to explore
the correlation between multi-modal data fusion and radiation
necrosis in recurrent NPC retreatment. Implicitly, the two
were combined to model, proving that the multi-modal data
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TABLE VI: Ablation study for different components on dataset A.

Lossmri recon Lossvae recon Losscls AUC ACC SEN SPE

% % ! 0.878±0.42 0.75±0.474 0.571±1.283 0.462±1.514

! % ! 0.878±0.36 0.76±0.357 0.635±0.87 0.650±0.76

% ! ! 0.818±0.132 0.8±0.272 0.686±0.63 0.571±0.97

! ! ! 0.936±0.028 0.85±0.145 0.857±0.58 0.692±0.73

had positive significance for predicting radiotherapy induced
necrosis in recurrent NPC.

To forecast recurrent necrosis in recurrent NPC for early
clinical intervention, we proposed an effective multi-modal
information fusion model for predicting necrosis in recurrent
NPC after re-irradiation. This model is the first to fuse multi-
modal MR image and three-dimensional radiation dose data to
predict necrosis in recurrent NPC. To verify the superiority of
the proposed method, we discuss the performance results of
the model on different modal data. In addition, we evaluated
different machine learning methods and analyzed the perfor-
mance of some existing feature fusion methods for necrosis
prediction. Finally, ablation experiments were performed to
evaluate the effectiveness of each component.

We defined a two-stage strategy for effective feature fusion
of multiple modal data, including a Dense U-shape and VAE
module. The main idea is to decompose the features of
different modal through self-supervised reconstruction loss and
supervised classification loss, that is, to fuse the features of
different modal of task consistency to classification prediction.
The self-supervised reconstruction loss is mainly used to
explore the shared and complementary information in features,
and the supervised classification loss is mainly used for task
consistency feature fusion.

Experiment show that our multi-modal feature fusion net-
work can effectively utilize the complementary information of
different modal features, and the self-supervised reconstruction
loss can be used as a supplement to promote the learning of
classification models.

In our study, an adaptive fusion strategy was adopted to
automatically learn feature combination weights to make the
final imaging and radiation dose features more task consistent.
Specifically, a 1D convolutional neural network is used to learn
the combined parameters, promote the effective feature fusion
of different modal, and implicitly carry out consistent feature
extraction. Compared with the existing machine learning and
multi-modal fusion methods, the characteristic of our method
is that it uses different fusion strategies to deal with the data
of different modal rather than directly concatenating features.
In addition, we applied radiomics methods to radiation dose
data; At the same time, the network model is optimized with
multiple constrained objectives.

Although our proposed method has achieved good perfor-
mance and ultimately enriches the research content in the
necrosis prediction of re-radiotherapy for recurrent NPC, there
are some shortfalls. Firstly, Showing that the model has good
generalization is not easy due to the need for more sample
data. So additional data are needed to verify the power of
the developed model. Secondly, this method manually extracts

omics features as the input of deep learning, and the feature
selection method is based on traditional machine learning,
which fails to build a complete end-to-end deep learning
network, and there may be bias during feature selection.
Finally, our study was only used to predict the probability of
necrosis and did not provide other prognostic indicators. In the
future, we aim to collect richer multicenter data, expand the
experimental scope, conduct more predictive analysis through
this study, and explore the interrelationship between multi-
tasks.

V. CONCLUSION

In this study, we propose a multi-modal feature fusion
network model for patients of recurrent NPC to accurately
forecast the probability of re-irradiation induced necrosis.
Specifically, we define self-supervised reconstruction loss to
extract the general and specific characteristics of different MR
modal information. We used self-supervised construction and
classification loss to conduct latent space feature embedding
of radiomics and dose omics to extract task consistency
characteristics. At last, the model learns the combination mode
of different modal through the self-adaption feature fusion
method. The experimental results indicate that the proposed
method has advantages in necrosis forecast compared to ex-
isting forecast methods and multi-modal data fusion methods.
Our method can accurately forecast the necrosis probability
and be a potential index for personal radiotherapy of recurrent
nasopharyngeal carcinoma.
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